

Next computing challenges at CERN Cloud

José Castro León CERN Cloud Infrastructure

- Technical leader of the CERN Cloud Service
- Joined CERN in 2010 to work into virtualization
- Core Team that built the Cloud Service in 2012
- In the OpenInfra community since 2012

Outline

- Introduction
- CERN Cloud
- Next Computing challenges
 - Approach
 - New Features:
 - GPU
 - SDN

European Organization for Nuclear Research

- World largest particle physics laboratory
- Founded in 1954
- 23 member states

CMS

CERN Cloud Infrastructure

- Infrastructure as a Service
- Production since July 2013
- CentOS 7 based (adding CentOS Stream 8 soon)
 - Based on RDO, x86_64 architecture
- Geneva Computer centre (adding a new DC)
- Highly scalable architecture
 - 48 cells on 5 regions
- Currently running **Stein*** release
 - Some services already in Xena release

~ Openstack services statistics

Users		Projects		Loadbalancers		Images		Volumes	Volumes si	File Shares	File Shares	Object Stor	Object Stor
3362		4589		332	332		+	7324	3.70 PB	5129	1.10 PB	4//	07.7 TB
Servers				Cores				RAM			Batch		
Physical 9052	Physical in use <mark>8833</mark>	Hypervisors 2013	Virtual 13452	Physical 485 K	Hyperv 58.3	visors V 3 K 8	Virtual 6.6 K	Physical 2.02 PB	Hypervisors 379 TB	Virtual 202 TB	Servers 5213	Cores 281453	RAM 1.07 PB

~ Time series

CERN Cloud Infrastructure

Huge computational challenge

- Continuously increasing computing needs
 - Current model is not enough
- Experiments
 - Increase data throughput to the DC
 - Exponentially increase of CPU resources
 - Increasing usage of GPUs
 - $HW \rightarrow SW \rightarrow FPGAs \rightarrow GPUs$

• In a difficult context

Threefold approach

- Increase RAW capacity
 - Current DC in Meyrin (3.5 MW)
 - New datacentre in Prevessin (4 12 MW)
- Boost flexibility
 - End user and operator perspective
- Enhance computing **performance**
 - Inclusion of heterogeneous resources
 - GPUs, ARM, ... and any future architecture

New datacentre in Prevessin

- Currently under construction, delivery by end of 2023
- Provide **extra capacity** for the upcoming LHC and HL-LHC runs
 - 3 floors with up to 4 MW per floor (**12MW**)

- Green field deployment
 - AvZs considered from the start
 - Dedicated OS control plane and Ceph Clusters
 - May change hypervisor disk layout
 - Introduce Software-Defined Networking

(Credit: + IMGS - Rocco Valantines)

Disaster Recovery

- Additional datacentre will be used for **computing** and also IT **services**
 - Focus on **critical** IT services for the organization

- Expose it as an **additional fully independent** region
 - Extra overhead to manage it

- Looking at **replication**, **multi-site** setups
 - Review building blocks available for users

Flexibility boost

- Close the **gap** with upstream
 - Currently under a big cold migration campaign
 - OpenStack (Stein* => Zed) + OS (el7 => el9)
 - Benefit of the **latest** features of the code
- Double down on **monitoring**, automation and probing
 - Handle 2 completely independent environments
- Remove the **boundaries** with network physical topology
 - Add Software Defined Networking

... be closer to upstream

Find the needle in the haystack

- Threshold based alarming on extreme cases
- Anomaly detection to find misbehaving nodes

Continuous probing the Cloud

- Use Rally as automated probe system
- Focus on infrastructure wide issues

Rally: Number of failing tests

Software Defined Networking

- Current networking model really tightened to the infrastructure
- Several technologies evaluated or under evaluation
 - OpenDaylight, OpenContrail/Tungsten Fabric, OVN
 - Currently offering LBaaS
- Fully fledged SDN deployment on new DC
 - Virtual Networks, Floating IPs, LBaaS ...
 - Provide maximum flexibility to end users

... be closer to upstream

Enhance computing performance

- Adding more computing resources (performance per watt per dollar)
- Need to consistently provision, monitor and configure them
 - May trigger changes in the whole stack
 - ARM recently added into the portfolio
 - Users can start rebuilding / validating their frameworks
 - Received batch of Nvidia A100 GPUs
 - Currently added into the GPU offering

Trying to efficiently provision and use GPUs

- Many different use cases require access to GPUs with different utilization
 - deep learning, inference, analysis, simulations, GIS, mechanical, ...
- 4 different Nvidia models available (T4, V100, V100s and A100)
- Available as vGPU and pci-passthrough (currently looking at MIG)
- Really scarce resources, preparing a lease model
 - Missing quota handling, we **really** need your help here

Conclusion

- Quite some challenges ahead of us
 - Catch up, scale up, provision more and also heterogeneous
- Building the foundation for the years to come
 - The path is already laid out, we just need to walk through it
- Joint effort with the community
 - Quotas for dedicated resources (flavors, custom resources)

... and this won't be possible without...

CERN Cloud and Linux teams

Thank you

More info:

https://computing-blog.web.cern.ch/

All our **open source** code is available on: <u>https://gitlab.cern.ch/cloud-infrastructure</u>

Thanks again to my colleagues

jose.castro.leon@cern.ch

@josecastroleon

Largest machine on Earth: 27 Km

Most powerful magnets: 8.3T

and in

Highest vacuum: 10 times less than on the moon

Coldest temperature: -271°C

Baremetal provisioning

... now we also manage ARM servers

CERN